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Fig. 1 Comparison between a typical (iterative) MapReduce application flow and an iterative allreduce application flow



Abstract— Many learning algorithms can be broken down into iterations: a data-local function and subsequent global data aggregation and redistribution [1]. However, this computation and communication pattern is not well represented in the current Apache Big Data Stack. On the other hand, MPI has long adopted these global data aggregation and redistribution operations. Since this technique deeply anchors in the HPC systems, it cannot be transplanted to clouds easily. In this paper, we express iterative applications as iterations of allreduce operations and build an allreduce framework to support an efficient, fault-tolerant and elastic way to run iterative applications. For efficiency, we apply Hypercube-like topology on allreduce operators, making the time complexity of allreduce operations   for small unsplittable data objects and  for large chunked data objects, where  is the number of processes and  is the size of data objects in each process. For fault tolerance, unlike MPI’s checkpointing methods, we recover the computation from failures using an algorithmic method by re-synchronizing global data through allreduce operations. For elasticity, we allow computation tasks to join or quit allreduce topology dynamically.
Keywords— allreduce; iterative application; big data processing
I. INTRODUCTION
MapReduce and Graph are two main processing models in the current Apache Big Data Stack (ABDS), both of which have many constraints on data processing. In the MapReduce model, data is viewed as Key-Value pairs and processed in Map tasks, then regrouped based on the key and processed again in Reduce tasks. In the Graph model, data is viewed as vertices and edges; computation results on each vertex are exchanged along edges to neighbor vertices. 
Over the ten-year evolution of the MapReduce model, each machine has gained more and more memory capacity, so many new MapReduce-like tools [][] intend to utilize more memory for data caching and data communication instead of using disk-based shuffling. The Graph model-based tools are also following this trend. Much research shows that in-memory caching and communication can improve the performance of the iterative algorithms. Iterative algorithms are commonly used in many fields, especially in learning. They often can be divided into iterations of local data computation with corresponding global data aggregation and redistribution. However, this kind of communication pattern does not appear often either in MapReduce or Graph tools. In Hadoop MapReduce, data aggregation is done through a single Reduce task and then redistribution occurs using distributed cache. Other tools prefer to add additional APIs/components to complete this process: first gather the data to a driver/master task and compute the final results, then broadcast them to all the tasks for the next round of computation [] (see Fig. 1). 
The existence of this kind of solution shows the limitations of mapping data aggregation and redistribution operations to the original computation model. It also results in bad performance upon implementation. Although there are engineering enhancements [], it does not change the fact that data movement has to be done in two rounds and the master/driver task is always a bottleneck in the communication. 
In contrast, MPI [] exposes all the global data aggregation and redistribution operations as “collective communication” operations. These can be divided into two categories. One is “data redistribution operations” which include broadcast, scatter, gather, and allgather. Another is “data consolidation operations”, including reduce, reduce-scatter and allreduce. The MPI collective communication operations are implemented with good performance. However, they cannot be used in Apache Big Data Stack directly because MPI is designed almost exclusively for HPC systems whose infrastructure is very different from cloud environments. In cloud systems, which use commodity machines and slow networks, the failure rate is high, and the applications need to deal with elasticity events to expand or shrink the computation dynamically based on user requests.
 In this paper, we use an allreduce operation to express the data aggregation and redistribution in the iterative applications. We propose,  design and implement a new framework which describes the iterative applications as iterations of allreduce operations that are able to run these applications in an efficient, fault tolerant and elastic way. We implement the allreduce framework on REEF [] (see Fig. 2). REEF provides a reusable control plane for scheduling and coordinating task-level work on cluster resource managers. As a layer in the whole big data stack, it can interface with different resource managers below it and attach different big data processing engines on top. With REEF, we can simplify task failure detection, as well as task adding or removing. To solve the performance issue, we apply a hypercube-like topology in allreduce algorithms. For fault tolerance and elasticity issues, we handle all the events of task failure, adding and removing what is reported from REEF and modifying the allreduce topology accordingly. We expose the failure of allreduce operations in the framework, and recover the iterative applications in an algorithmic manner by re-synchronizing global data through another allreduce operation.[image: ]
Fig. 2 REEF Architecture


For the remainder of this paper, section 2 talks about the programming model in the allreduce framework. Section 3 demonstrates how the applications are written in the framework. Section 4 introduces the hypercube topology and how it is applied on allreduce algorithms. Section 5 describes how failure and elasticity events are handled in the allreduce framework. Section 6 shows experiment results. We give discussions about the related work in section 7 and conclusions in section 8. 
II. ALLREDUCE PROGRAMMING MODEL
With this programming model, the computations are connected by allreduce operations. By definition, allreduce is an all-to-all communication. Every task is a participator and no task can control the whole process as a master. In allreduce operations, each task takes the local data as the input and outputs the result returned by the reduce function which runs on all the input data. The reduce function is required to be commutative and associative. [image: ]
Fig. 3 Control Flow on Each Task in Allreduce Framework


In REEF, allreduce operators are firstly configured and then used in the tasks. Configuration happens on the driver side. Each allreduce operator is defined with a name and related reduce function object. Later, at the task side, every operator is fetched from the task context according to its name. The allreduce operation does not return output to the user directly. Instead it returns an object called AllReduceResult or AllReduceResultList. If allreduce succeeds, it contains the output. If not, it shows it has an empty value. Because allreduce is an all-to-all operation, if a portion of the tasks fail, some other tasks may also fail to accomplish the communication. As a result, among those tasks staying alive, some may have the result while others do not. Through this manner, we expose the execution failure of allreduce operation to the application (see Table I).TABLE I Allreduce Operation Interfaces
AllReduceResult<T> allreduce(T aElement);
AllReduceResultList<T> allreduce(List<T> elements);


This definition of allreduce in the allreduce framework is different from the original allreduce definition in MPI. There failure is not exposed to the application; instead the framework automatically recovers all the tasks back to a consistent system state through checkpointing and rollback, so the allreduce operator in MPI always assumes it can get the correct output. However in the cloud environment, it is not likely we can stop the whole world and synchronize all the tasks to check if every task remaining alive has the final result. As such, we have to loosen original strict allreduce definitions and expose failures to the applications, granting them flexibility on how they continue the computation. We also provide an API to check and update the allreduce topology changes if a failure is detected. In the next section, we will show how to combine all these interfaces to write fault-tolerant and elastic iterative applications. 
Finally, we describe the application control flow on each task as iterations of local computations and allreduce operations (see Fig. 3). In each iteration, the first allreduce operation is Control Message Allreduce, then one or more allreduce operations follow sequentially. The control flow redirects the control to the related local computation and the allreduce operation based on the results of the control message allreduce. If any of the allreduce operations fail, the control flow goes back to the beginning, updates the topology, redoes the control message allreduce operation and then redirects the control to one of the local computations again. For failure recovery, each computation may need to re-synchronize the global data, which is the allreduce output from the previous allreduce operation, among the tasks through another allreduce. In addition to the time used on task restart and data reloading, the main cost of failure recovery depends on the global data re-synchronization, which relies on the performance of allreduce operations. As long as this is efficient, we can greatly reduce the time cost on failure recovery.
III. APPLICATIONS
Many iterative algorithms can be expressed as iterations of local computation plus subsequent allreduce operations. Here we use K-means Clustering and Batch Gradient Descent to show how our fault-tolerant and elastic allreduce operator works. 
A. K-Means Clustering
In K-means Clustering, every iteration generates a new version of centroids (cluster centers) to use as the input in the next iteration. Each centroid is calculated through averaging the coordination values of points which belong to the same cluster center from the last iteration. In distributed K-means clustering, a task only owns a portion of data points so that any task only has a local summation of point coordination values after local computation. As a result, to generate the global new centroids for the next iteration, an allreduce operation using addition as reduce function is required.
When a failure happens, some tasks may lose the most updated version of the centroids and cannot continue the computation for the next iteration. In this situation, the “broadcast” operation is required to distribute the most updated centroids from one task to the rest. Here we use another allreduce operator to simulate the “broadcast” operation. The task which is identified to broadcast the most updated data puts the centroids into the allreduce  operator as the input, while tasks which need the newest centroids for the current iteration input an empty value. In the reduce function, empty values are ignored and only the real data is kept. In Section 4, we will show how this operation simulation takes effect without influencing the performance.[image: ]
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Fig. 4 Parallelism Pattern and Control Flow on Each Task in K-Means Clustering


Finally, the control flow of the K-Means clustering is as follows: at the beginning of each iteration, we invoke a control message allreduce operation. Using the status of all the tasks as the input, this allreduce operation determines control information such as the current iteration number, and whether global centroid data is required to be synchronized. Once the control information is decided, if data synchronization is required, the tasks starts to perform allreduce on centroids synchronization first and then on new centroids calculation. If not, they apply allreduce on new centroids calculation directly. At the end of the iteration, or if a failure happens during the iteration, the task always goes back to the beginning of the control flow, checks and updates the allreduce topology, and applies Control Message Allreduce again (see Fig. 4).[image: ]
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Fig. 5 Parallelism Pattern and Control Flow on Each Task in BGD


B. Batch Gradient Descent
Batch gradient descent (BGD) is another application example. It tries to minimize an objective function to achieve maximum-likelihood estimation. In a normal algorithm flow, the BGD application needs two allreduce operations per iteration. One is loss and gradient calculation and another is line search. The results are used to update a model vector which is held on all the tasks across iterations (see Fig. 5).
We have seen that in K-Means Clustering, an additional allreduce operator is used to synchronize global centroids data. Similarly, here we need two additional allreduce operators if  failure occurs. A model allreduce operator is used to synchronize model vector before applying loss and gradient allreduce. Additionally an allreduce operator for the model vector and gradient descent vector is used before doing line search allreduce. The control flow is very similar to the one in K-Means Clustering but with more steps. At the beginning of the iteration, control message allreduce is executed to decide the control status of the current iteration. It returns the current iteration number, determining which allreduce operation to execute and whether global data synchronization is required. Once an iteration ends (successfully or due to a failure), the control flow returns to the beginning of the iteration to check and update the topology and launch Control Message Allreduce.
In general, the method of handling failure in this control flow is to update the topology, redo Control Message Allreduce and then perform global data synchronization. We should note that deciding which tasks participate in the new updated topology is not controlled by tasks but by the driver. Since in REEF the task failure is also exposed to the driver process, the application driver can decide if it just removes the failed task or needs to add a new task back in the new allreduce topology. The cost of this kind of in-memory failure recovery is much lower than checkpointing. In checkpointing, adding checkpoints creates repeated disk access, while global rollback may lose the most recent computation results. Here we utilize characteristics of the iterative applications and use the execution status of the tasks still alive to recover those failed tasks through an additional allreduce operation to resynchronize the global data. In Section 4 we will show the time used on global data allreduce operations can be controlled. 
As a learning algorithm, the characteristics of a BGD application also show the elasticity in computation. Later in Section 6, we show the BGD application can be executed in ramp-up mode and failure-ignorance mode.  In ramp-up mode, BGD can start with a small number of tasks with a portion of application data if all the computation resources are not available. Then when more tasks are allocated, they automatically join the computation at later iterations. In failure-ignorance mode, if some tasks fail and there are no computation resources available to replace them, the application can continue with the rest of the tasks. When these are allocated later, they can still join back with the computation. BGD shows that in both modes, the application can still obtain the correct results.
IV.  ALLREDUCE TOPOLOGY AND ALGORITHMS
We use hypercube topology as allreduce topology. The original topology introduced in MPI requires the number of nodes to be a power of 2. Here we do some adjustment to allow the topology to work on any number of  processes so we can easily add or remove nodes in the topology in  steps. Next we talk about two data exchange algorithms for allreduce operation in hypercube topology. One is for small unsplittable data and another is for large chunkable data. Both of them have very good theoretical execution performance.
A. Hypercube Topology
A typical hypercube topology example is a 3D cube with 8 nodes (see Fig. 6). Along the x-, y-, z-axes, each node has 3 different neighbors. To obtain the reduced value from all the nodes, all nodes firstly exchange data with their neighbors on the x-axis, then on the y-axis, and finally on the z-axis.  [image: ]
Fig. 6 Hypercube Topology of 8 Nodes


Generally a complete hypercube topology is a simulation of a hypercube of dimension ‘d’ which contains  nodes. It is constructed from two hypercubes of dimension d minus 1 by connecting nodes with a corresponding index, adding a leading binary bit to the index of each node. For all nodes in one of the two hypercubes this leading bit is set to 0 and to 1 for the nodes in the other hypercube. [] Back to the example of 8 nodes: we firstly build a hypercube topology of 1 dimension with two nodes 0 and 1. Next we build a hypercube of two dimensions with 2 hypercubes of 1 dimension. Then we connect Node 0 with Node 2 and connect Node 1 with Node 3. Now we have a square. Finally we build a hypercube with 3 dimensions by combining two 2D hypercubes. Then we connect Node 0 with Node 4, Node 2 with Node 6, Node 1 with Node 5, and Node 3 with Node 7. In the allreduce algorithm, a node always exchanges data with its connected neighbor nodes. 
B. Allreduce Topology in REEF
We can adapt this hypercube topology to an allreduce operator in REEF. However, in real situations, the total number of nodes may not be a power of two. So we add additional rules to control the construction of the allreduce topology.
We give the node added into the topology an ID which starts from 0 and then grows in the natural order. Dimension  is numbered from 0 to . Here  is the max dimension of the hypercube and is calculated based on the current max node ID in the topology: 

For example, in a hypercube of 8 nodes, nodes are numbered from 0 to 7 and the 3 dimensions are numbered as Dimension 0, 1 and 2. If some nodes are removed from the topology, their IDs are kept in a freed ID list and reused for later node addition. Nodes are connected in three ways based on how they communicate: “pairing”, “sending”, or “receiving”. “Pairing” means the two connected nodes both send and receive data from each other. “Sending” means that one node sends data to the other node.  A “receiving” node only receives data from the other node. 
When a node with a given ID is added (the node ID is assigned through either adding 1 on the current max node ID, or being retrieved from a list with freed node IDs), we search its neighbor on this dimension. The rule is as follows:
1) Calculate the neighbor ID of this node ID for pairing.

2) If the nodeID for pairing is not available, find an alternative node to send data. Mark “sending” on the node, and “receiving” on the neighbor node. 

3) If no alternative node exists, mark the neighborID as -1
4) If no alternative node is available, mark the neighborID as -2.
5) If the neighbor ID of the neighbor node (which is calculated based on Rule 1 and Rule 2) was originally assigned to -2, find all the nodes available in Rule 2, receive data from all these nodes.
Here we give examples by adding nodes from 0~5 to a topology. At the beginning, there is only one node, Node 0. Based on Rule 2, we find its neighbor for pairing is Node 1. But this ID is larger than the current max node ID. So based on Rule 2 and Rule 3, its neighbor node is set to -1. Then we add Node 1. Now the max dimension is 1. Based on Rule 1, we find its neighbor for pairing is Node 0. Then we connect Node 0 and Node 1.[image: ]
Fig. 7 Add Node 0 ~ Node 5 to Allreduce Topology 


Next we have Node 2. Now the max dimension is 2, so we need to find Node 2’s neighbors on Dimension 0 and Dimension 1. On Dimension 0, based on Rule 1, we find its neighbor for pairing is Node 3. However, this node is not available in the topology. So we use Rule 2 and get its neighbor Node 1 for sending. On Dimension 1, based on Rule 1, we find that its neighbor node is Node 0. Next comes Node 3. On Dimension 0, we find its neighbor is Node 2. So Node 2 removes its original neighbor for sending, and connects to Node 3 for pairing. On Dimension 1, we connect Node 3 with Node 1 based on Rule 1.  Now these 4 nodes form a complete hypercube of 2 dimensions. Similar strategies are also used when adding Node 4 and Node 5 (see Fig. 7).
To remove a node, we extract it from the topology and return the ID to the freed node ID list. Then we check the neighbors of the node on all dimensions and do related modifications on each dimension. We obey the following rules: 
1) If the neighbor node was “sending” or “pairing”to this node, find an alternative node to send the data towards.

2) If no alternative node is available, mark the neighborID as -2.
3) If the neighbor node was receiving data from this node, remove the receiving directly.
Taking the topology of 6 nodes as an example, we want to remove Node 3 from the topology. Node 3 has two neighbors. They are Node 2 on Dimension 0, Node 1 and Node 5 on Dimension 1. Node 2 was pairing with Node 3 on Dimension 0. Based on Rule 1, we choose Node 5 as the new neighbor for Node 2 to send data towards. Node 1 was pairing with Node 3. Because there is no alternative node, based on Rule 2, we mark the neighbor ID as -2. Node 5 was sending data to Node 3. Based on Rule 2, its new neighbor ID is also -2. If we want to add back Node 3 later, we can use Rule 1 and 5 for node addition (see Fig. 8).  
From the rules and examples, we see both adding and removing a node takes about  steps. But in the worst case when we need to apply Rule 5 in node addition or Rule 2 in node deletion, both take about  steps. For example, if all but one node with even ID numbers are removed, then the only node left has  links. In this situation, both removing this node and adding it back later take about  steps. But this is a very low possibility.[image: ]
Fig. 8 Remove Node 3 and Add Node 3 Back


C. Allreduce Algorithms
We use two different algorithms to do allreduce on this topology. For unsplittable data, which is usually a small data object containing a few numbers, strings, and Boolean values, we exchange this kind of data object directly on the topology. If the topology is balanced, each node has around  neighbors and the allreduce time is about , where  is the size of the data object in bytes and  is the number of processes.
For the chunkable data object, which is usually a large array, we use reduce-scatter and allgather to do allreduce. We assume the data object can be split into chunks with IDs from 0 to  ( means the number of chunks). Then in reduce-scatter, on every dimension , each node send the chunks to the neighbor with the following criteria:
 
In this way, each task (which is a node in the topology) only needs to reduce a small number of chunks. Then in allgather, on each dimension , nodes send the data which is originally owned after doing reduce-scatter and data which is received on the dimensions whose IDs are less than . On a balanced topology, both processes take around  time complexity where  is the total size of all the chunks in bytes. 
In the current cloud network, nodes are highly connected [], which means links between each two nodes have similar speed and we need not worry that the real network topology could affect our virtual hypercube-like allreduce topology. But when the topology becomes imbalanced, the performance also suffers. Potentially, if all but one node with odd ID numbers fail, then all the nodes with even ID numbers need to send data to the only node left, and the allreduce time complexity is about . One possible solution is to rebalance the whole topology when there is a large number of node failures.
These two allreduce algorithms can also simulate broadcasting in global data synchronization. In this simulation, the task which owns the global data puts the data as the allreduce input while other tasks put an empty value as the allreduce input. Inside of an allreduce function, real data is kept while empty values are ignored. With this method, we can have broadcasting done in  time for unsplittable data and  time for chunkable data.
To avoid causing performance bottleneck or out-of-memory error on nodes which may receive data from multiple nodes at the same time, if the data for sending is larger than a threshold, we let the sender node send a request to the receiver node first. Without the acknowledgement from the receiver node, the sender node won’t send the real data to the receiver node.
V. TOPOLOGY CONTROL
In REEF, task failure events and new task incoming events are reported to the application driver. We use this information to control topology update and notify client side topology update on the tasks. In this section, we talk about how tasks and the driver worker together to track and update the allreduce topology.
A. Iteration Control
Because there is no master to coordinate tasks in the allreduce operation, once a task enters the allreduce operation, it communicates with the neighbor nodes and then leaves the operation without waiting for the completion of the execution on other tasks. As a result, some tasks may finish the execution earlier and enter the next round of the allreduce operation while others remain in the current one.
We then employ iteration numbers to track the progress on each task. When the current iteration ends, the iteration number is updated and this indicates that the execution can enter the next. Later we will show how to use this information to guide topology updates. To synchronize the allreduce operations in one iteration, we don’t update the iteration number directly at the end of every allreduce operation, instead waiting for the beginning of each iteration inside of topology checking and update. 
B. Handling a task failure
When some tasks fail, the failure event is reported to the driver and processed inside of it. In this situation, the allreduce operation cannot be executed on the current topology, therefore the driver sends a message with type Source Dead to all the tasks in the current topology. From the viewpoint of a task, once it receives a Source Dead message, it will send an ACK message to the driver to report its current iteration number.  
The driver waits for the arrival of all the task reports. It examines the iteration number on each task and finds the maximum number. The driver generates the topology with the new iteration number , then sends the new topology to all the tasks (each task gets a list of its own neighbors with related communication types). When a task receives the new topology, it stores the topology with the iteration number as the key. After the topology is checked and updated, tasks are redirected to the new iteration with the new topology.
C. Handling new tasks for the elasticity[image: ]
Fig. 9 Topology update control


Handling a new task is done in a similar way to handling a task failure. In contrast, the original topology can still work when a new task is coming. For the purpose of decreasing the number of tasks communicating with the driver and getting better scalability, the driver only communicates with the tasks which need to communicate with the new task.    
When an event about an incoming new task is learned by the driver, it sends a message with type Source Add to the tasks. When all the related tasks get the message, they reply to the driver with an ACK message which contains their current iteration. Similarly, the driver waits for the arrival of all the ACK messages. It finds the current max iteration number and generates the topology for the new iteration .
Once the tasks receive the new topology from the driver, they save it locally with its iteration number as the key. As opposed to the task failure method, tasks won’t update to the new topology immediately at the coming iteration. They still update the iteration number one by one until the iteration which contains the new topology arrives. Because only about  number of nodes are notified about the topology update, many other tasks are still working with the original pace.
D. Control under mutiple events and multiple operators
In the real execution environment, there may be many task failure events or many new task adding events, even a mixture of events with both types. This presents a challenge: how to ensure the integrity of the topology when it changes dynamically. We take the following 5 steps to do topology updates (see Fig. 9):
1) When a task event arrives, we copy the current active topology to a sandbox topology.
2) Process task adding/removing events on the sandbox topology.
3) We notify each task with a Source Dead/Add message and wait for the ACK message from each task. Notice that each task only gets one message; if a task already gets one Source Dead/Add message, it won’t receive another one.
4) Once all replies are received, the driver sets the sandbox topology as the active topology and updates the related iteration number.
5) The driver sends the new topology to all the tasks including new tasks if they exist. The message also includes other information such as if there is a failure in the old topology or not. If the topology update is because of the failure, the tasks are redirected to the new iteration with the new topology in topology checking and updating. If the topology is updated because of new tasks, all the tasks just increase the iteration number as normal.
 So in this mechanism, the driver is responsible for failure detection and takes the initiative in topology update. The driver always waits for the arrival of replies from all the tasks related to the events. Then the topology update is consistent with the events processed.
We synchronize the topology update on all the allreduce operators in one iteration. Afterwards the allreduce operators share the same view of the topology in the iteration and their topologies are checked and updated together at the end. This helps to avoid deadlocks and computation incorrectness caused by topology inconsistency.  
VI. EXPERIMENTS
We deployed REEF on the Big Red II [] supercomputer at Indiana University. Following this we ran experiments on REEF Allreduce framework in which we benchmarked allreduce and tested two real applications, K-Means Clustering and Batch Gradient Descent. We allocated 128 compute nodes and ran up to 512 tasks.
A. Test Environment
We used the nodes in the “cpu” queue on Big Red II for the experiments. Each of these nodes has 32 processors and 64GB memory, and are connected with Cray Gemini interconnect. Each experiment utilized 128 nodes, which is the maximum number that can be allocated on Big Red II, and we chose Cluster Compatibility Mode in job submission to let the compute nodes behave like nodes in a normal Linux cluster. 
The following software was installed on Big Red II: JDK 1.7, Hadoop-2.5.0 and REEF 0.8. Hadoop is not naturally adopted by supercomputers such as Big Red II because each node does not have large local disk space to run HDFS. As a result we had to use only the local /tmp directory, which is mapped to 32GB of the total memory on a compute node.  
In all the experiments, scaling was evaluated based on the number of tasks; in other words, the number of containers.  We set the maximum number of containers on each node to 4, allowing us to deploy up to 512 tasks. We decided not to exploit the locality of the task assignment in the allreduce topology in order to explore the scalability by using a small number of compute nodes, thereby simulating a distributed environment with a large number of nodes. The allreduce benchmarking test started with 2 tasks and then kept doubling the number of tasks to 4, 8, 16, all the way up to 512.  In K-Means clustering, we did strong scaling tests initially with 32 tasks and then continued doubling as described above. For Batch Gradient Descent, to easily select input data, we did weak scaling tests on 10, 50, 100, 200 and 500 tasks. 
B. Allreduce Benchmarking
We benchmarked allreduce performance with three different methods: allreduce without chunking input data, allreduce with chunked input data, and broadcast + reduce using tree topology. We set the memory size of each task container to 4GB. 
Fig. 10 AllReduce with 100MB data per Task

Fig. 11 Allreduce with 1MB input data per Task




We tested allreduce on 100MB data and 1MB data (see Fig. 10 and Fig. 11). The input data on each task is a double array and the allreduce function is addition. We present the results using logarithmic scale based on 2. In 100MB data tests, in our analysis for this paper, allreduce with chunked input data performs best of all. When the number of tasks increases, the performance does not change much, maintaining around 4-5 seconds. The execution time of allreduce without chunking input data grows following a logarithmic scale. As we estimated, broadcast + reduce with tree topology takes around twice the time of allreduce without chunking input data. The time difference is not that obvious in 1MB data tests; allreduce with and without chunked input data have similar performance. Regardless, we still can see the obvious overhead from broadcast plus reduce.
C.  K-Means Clustering
We also performed experiments on K-means clustering with two different data sets. One was to cluster 200 million 3D points to 4 thousand clusters (50K points : 1 cluster in average). Another was to cluster 2 million 3D points to 400 thousand clusters (5 points : 1 cluster in average). The former is a normal use scenario while the latter is a special case which uses clustering as classification.
The performance is shown in Fig. 12. We ran the application with two different data sets and increased the number of tasks from 32 to 512. We measured the speedup in two test cases with the assumption that there was linear speedup on 32 tasks. With this baseline, the speedup on 512 tasks in clustering 200 million points to 4 thousand centroids is about 491, which is almost a linear speedup. In the other test, the speedup on 512 tasks is 432, which is slightly lower than the linear speedup due to the allreduce overhead of the big centroids data.
As we have explained in previous sections, this K-Means Clustering application is both fault tolerant and elastic. The driver can add new tasks with new point data to the allreduce topology for subsequent iterations. Note the accuracy of this type of elastic K-Means Clustering application is not covered in this paper. As a result, we are not going to evaluate elastic K-Means Clustering here.
We evaluated the cost of failure recovery in this K-Means Clustering application (see Fig. 13). When some tasks failed, the REEF driver automatically re-launched the failed tasks. We measured the average time of normal iterations and the average iteration time of recovered iterations. Our findings show the time consumption in failure recovery is due to task input data loading and the global data re-synchronization. Here since both input data per task and global data are not very large, a recovered iteration only takes a little more time than a normal iteration. 
D. Batch Gradient Descent
In this experiment, we used batch gradient descent to learn splice site recognition data in order to recognize a human acceptor splice site []. We ran a Hadoop Map-only job to generate 500 partitions of feature data while taking sample data of 50 million sequences as the input. Each partition created is about 1.5GB after compression. Later each partition is processed by one task in the BGD application. The global model data is a double array with 11,725,480 dimensions, about 100MB in total.
We tested the weak scaling of the BGD application by running the application with 10 partitions, then with 50, 100, 200, and 500. We tested the performance of each iteration using 3 different allreduce methods. The results are shown in Fig. 14. Allreduce with chunked input data still performs the best, although inside of the implementation there is overhead from splitting the data into chunks each time we perform allreduce. The execution time per iteration with 200 partitions shows little difference between the execution time on 500 partitions. For the other methods, namely allreduce without chunking input data and broadcast + reduce using tree topology, both followed the logarithmic scale, are only much slower. All these results match with our observations in the allreduce benchmark test.
The BGD algorithm is elastic. The training process can be done based on any number of partitions of the input data. Here we present the performance of the BGD application in ramp up mode and the accuracy of the model learned in each iteration. We start with 10 partitions and add 14 in each iteration. Finally we have 500 partitions on Iteration 36 and run with that number until Iteration 100. We record the model trained every 5 iterations and evaluate them on 500 data partitions. The result is shown in Fig. 15. Tasks are launched sequentially every 4 seconds. In ramp up mode, the first few iterations take longer than the following iterations because the new tasks joined in those iterations have to load data into memory first. This process may take about 200 seconds. Even so, ramp up mode still takes hundreds of seconds less than the normal execution mode. For accuracy, the loss values of the models trained in the first several iterations stay on high values and the trend decreases slowly (which means the accuracy is low). After all the data is added, the loss value drops and draws close to the loss value computed in the normal execution. 
Fig. 12 K-Means Clustering Execution Time per Iteration and Speedup

Fig. 13 Average Execution Time Comparison of Normal Iterations and Recovered Iterations on 2M Points, 400K Centroids and 200M Points, 4K Centroids


Similarly, we show the results on a failure ignorance test in Fig. 16. In this test, we killed 400 tasks in Iteration 5 and recovered all the tasks in Iteration 61. Later we evaluated all the models on 500 input data partitions. The result shows that the model trained in the iterations with 100 of 500 tasks has higher loss values compared with the models trained on the same iteration in the normal execution. When all the tasks are added back, the difference between the loss values on the same iteration in two different execution modes gets progressively smaller, and finally becomes negligible.
Fig. 14 BGD Weak Scaling

Fig. 15 Ramp up Test v.s. Normal Execution on 500 Tasks

Fig. 16 Normal Execution vs. Failure Ignorance on 500 Tasks


VII. RELATED WORK
Research into collective communication operations in the big data processing field is only now garnering attention. Through research on iterative applications, we have come to realize that the performance of these collective communication operations is very important to the performance of the whole application.  
Some initial work in this area has been done in Twister [] and Spark []. Both tools try to improve broadcast operations in iterative MapReduce chains. Further research [][] aims to add allgather and allreduce into Hadoop. Later work on Harp [] attempts to build a whole collective communication layer which is available to be used in MapReduce big data processing tools.   However many implementations only try to provide an in-memory communication solution. The performance and related communication topology is not well studied, and this work is done either on top of Hadoop directly or Hadoop-like MapReduce tools. So all these solutions only support a fixed number of tasks without elasticity. Furthermore, for fault tolerance, they mainly use disk-based checkpointing between iterations to ensure computation fault tolerance without considering communication fault tolerance.
VIII. CONCLUSIONS
This paper presents an efficient, fault-tolerant, and elastic allreduce framework. With this users can express iterative applications as iterations of allreduce operations. Our research shows that with a fault-tolerant and elastic allreduce operator, removing failed tasks and adding new ones can be executed automatically between iterations of the computation.
We improved hypercube topology and made an allreduce topology which can work on any number of tasks. Two different allreduce algorithms are deployed on this topology: allreduce without chunking input data and allreduce with chunked input data through reduce scatter + allgather. Both methods have better performance and are at least twice as fast compared with allreduce through broadcast + reduce using tree topology. Furthermore, allreduce with chunked input data has better performance than allreduce without chunking the input data on allreduce of the large data. Experiments show that the implemented allreduce operator is very scalable and the execution time of the allreduce operation can be constant.
We included a mechanism for updating the allreduce topology when removing failed tasks and adding new tasks. The cost of updating topology is low, which only involves message exchange between tasks and drivers, especially when adding new tasks, where only  tasks are required on the driver. We also show that the cost of computation recovery from the topology changes is very low. Other than waiting for the start of the new tasks, one only needs to re-synchronize the global data shared between tasks. This process can be done without using any disk-based checkpointing, just an additional allreduce operation.
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